Controlled Release of Agrochemicals Intercalated into Montmorillonite Interlayer Space

نویسنده

  • Harrison Wanyika
چکیده

Periodic application of agrochemicals has led to high cost of production and serious environmental pollution. In this study, the ability of montmorillonite (MMT) clay to act as a controlled release carrier for model agrochemical molecules has been investigated. Urea was loaded into MMT by a simple immersion technique while loading of metalaxyl was achieved by a rotary evaporation method. The successful incorporation of the agrochemicals into the interlayer space of MMT was confirmed by several techniques, such as, significant expansion of the interlayer space, reduction of Barrett-Joyner-Halenda (BJH) pore volumes and Brunauer-Emmett-Teller (BET) surface areas, and appearance of urea and metalaxyl characteristic bands on the Fourier-transform infrared spectra of the urea loaded montmorillonite (UMMT) and metalaxyl loaded montmorillonite (RMMT) complexes. Controlled release of the trapped molecules from the matrix was done in water and in the soil. The results reveal slow and sustained release behaviour for UMMT for a period of 10 days in soil. For a period of 30 days, MMT delayed the release of metalaxyl in soil by more than 6 times. It is evident that MMT could be used to improve the efficiency of urea and metalaxyl delivery in the soil.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methoxy-modified kaolinite as a novel carrier for high-capacity loading and controlled-release of the herbicide amitrole

Methoxy-modified kaolinite was used as a novel carrier for loading and release of the herbicide 3-amino-1,2,4-triazole, known as amitrole (abbreviated here as AMT). The methoxy modification made the interlayer space of the kaolinite available for AMT intercalation. The AMT loading content in methoxy-modified kaolinite reached up to 20.8 mass% (twice the loading content by unmodified kaolinite)....

متن کامل

Montmorillonite as a drug delivery system: intercalation and in vitro release of timolol maleate.

The need for safe, therapeutically effective, and patient-compliant drug delivery systems continuously leads researchers to design novel tools and strategies. Clay minerals play a very crucial role in modulating drug delivery. This work examines the advantageous effect of clay mineral as drug carrier for timolol maleate (TM), a nonselective beta-adrenergic blocking agent. The intercalation of T...

متن کامل

Herbicide-Intercalated Zinc Layered Hydroxide Nanohybrid for a Dual-Guest Controlled Release Formulation

Herbicides, namely 4-(2,4-dichlorophenoxy) butyrate (DPBA) and 2-(3-chlorophenoxy) propionate (CPPA), were intercalated simultaneously into the interlayers of zinc layered hydroxide (ZLH) by direct reaction of zinc oxide with both anions under aqueous environment to form a new nanohybrid containing both herbicides labeled as ZCDX. Successful intercalation of both anions simultaneously into the ...

متن کامل

Sodium Montmorillonite/Amine-Containing Drugs Complexes: New Insights on Intercalated Drugs Arrangement into Layered Carrier Material

Layered drug delivery carriers are current targets of nanotechnology studies since they are able to accommodate pharmacologically active substances and are effective at modulating drug release. Sodium montmorillonite (Na-MMT) is a clay that has suitable properties for developing new pharmaceutical materials due to its high degree of surface area and high capacity for cation exchange. Therefore ...

متن کامل

Biological Application of Layered Double Hydroxides in Drug Delivery Systems

This review focuses on the extensive study of different layered double hydroxides (LDHs)nanostructures and also their biological and physicochemical (in vitro) properties to encapsulateand deliver drugs with a recognized pharmacokinetic profile in a sustained/modified manner forbetter remedial efficacy contrasted to the corresponding conventional treatments using different<br ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014